MICRO 2021 Submission #977 — Confidential Draft — Do NOT Distribute!!

SquiggleFilter: An Accelerator for Portable Virus Detection

ABSTRACT

The MinlON is a recent-to-market handheld nanopore se-
quencer. It can be used to determine the whole genome of
a target virus in a biological sample. Its Read Until feature
allows us to skip sequencing a majority of non-target reads
(DNA/RNA fragments), which constitutes more than 99% of
all reads in a typical sample. However, its does not have any
on-board computing, which significantly limits its portability.

We analyze the performance of a Read Until metagenomic
pipeline for detecting target viruses and identifying strain-
specific mutations. We find new sources of performance
bottlenecks (basecaller in classification of a read) that are not
addressed by past genomics accelerators.

We present SquiggleFilter, a novel hardware accelerated
dynamic time warping (DTW) based filter that directly ana-
lyzes MinlON’s raw squiggles and filters everything except
target viral reads, thereby avoiding the expensive basecalling
step. We show that our 14.3W 13.25mm? accelerator has
274x greater throughput and 3481 x lower latency than ex-
isting GPU-based solutions while consuming half the power,
enabling Read Until for the next generation of nanopore se-
quencers.

1. INTRODUCTION

The COVID-19 pandemic caused by the SARS-CoV-2
virus continues on a global scale. Today, diagnostic tests are
widely available to detect SARS-CoV-2. Most of these tests
involve some form of Polymerase Chain Reaction (PCR), a
common technique for exponentially amplifying DNA/RNA.
In order to detect a virus such as SARS-CoV-2, custom
“primers” are first designed and manufactured which will
only attach to and amplify specific regions of DNA/RNA
in the target virus’s genome. After PCR, the virus’s pres-
ence or absence can be determined based on whether the
amplification was successful or not.

A significant shortcoming of the current approach is that
PCR primers are targeted to a specific virus. Custom primer
design is a complex, error-prone, and time-consuming
process [44] [43]. Even though SARS-CoV-2’s RNA was
sequenced in early January 2020, validated SARS-CoV-2
specific PCR primers took several months to develop [43] [2].
Lack of mass testing capability in the early stages of SARS-
CoV-2 made it difficult to detect and control its spread, lead-
ing to a catastrophic pandemic. While we now have adequate
testing capability for SARS-CoV-2, it is not unlikely for an-
other novel virus like SARS-CoV-2 or its variants to emerge
in the near future [40], and if it does, we need to be prepared
with adequate testing infrastructure in place to detect and
control its spread in the early stages.

We envision a programmable virus detector (one that con-
structs whole viral genomes) that can be deployed worldwide.
As soon as an emerging novel virus is discovered and se-
quenced, the reference genome of the novel virus would be

distributed to all the devices, instantly turning them into tar-
geted detectors.

Our solution uses Oxford Nanopore Technologies’ (ONT)
MinlON Mk1B (henceforth, referred to as the MinION), a
new-to-market palm-sized DNA/RNA sequencer. It is fairly
low-cost, portable, and can sequence long reads in real time.

«

Figure 1: MinION sequencer in our laboratory.

We replace targeted PCR with universal PCR [62], which
amplifies all DNA/RNA. Thus, it avoids the problem of cus-
tom PCR primer design and deployment mentioned earlier.
However, this introduces a different problem, as up to 99.99%
of the DNA/RNA in a typical biological specimen (e.g. saliva)
is non-viral [26] (non-target) and most belongs to the host.
Amplifying all DNA/RNA preserves this ratio, resulting in
the vast majority of sequencing and computing time and cost
stemming from processing non-target DNA/RNA.

In order to solve this needle-in-a-haystack problem, ONT
sequencers have a feature called Read Until [21]. As reads
(DNA/RNA fragments) are sequenced, they need to be ana-
lyzed in real-time. As soon as the computer classifies that the
read is non-viral, the sequencer is instructed to eject it, which
saves the time and cost of sequencing non-viral reads (>99%
of all reads). Unfiltered viral reads are used to construct
the whole virus genome using reference-guided assembly
(alignment and variant calling).

The MinION, however, does not have any on-board com-
puting power to perform such secondary analysis. In this pa-
per, we analyze the performance of the Read Until bioin-
formatics pipeline for efficiently sequencing viral pathogens,
and realize a portable computing solution that can be inte-
grated with MinION.

We discover new performance bottlenecks that are not ad-
dressed by past genomics accelerators [20,23,24,28,33,41,
55,61]. In particular, we find that the Deep Neural Network
(DNN) basecaller (software that translates MinION’s elec-
trical squiggles to AGTC bases) dominates the computing
time (96%). The aligner and variant caller, which have been
the targets of recent accelerator research, constitute a much
smaller fraction of compute. We also find that a current edge
GPU is inadequate to keep up with the throughput of the
MinlON. Also, its high latency in classifying a read prevents
us from taking advantage of the latency-critical Read Until
feature of MinION.

Converting squiggles to bases using a compute-intensive
basecaller, and then aligning to check if a read belongs to the
target virus is needlessly expensive for classifying it. Instead,
we sKip the basecaller altogether by directly comparing

each read’s squiggles to the precomputed expected signal
profile of the target virus’s entire reference genome (the
“reference squiggle”). By skipping the compute-intensive
basecaller step, we improve efficiency significantly.

We present SquiggleFilter, a hardware/software co-designed

filter which identifies non-target reads by directly comparing
the real-time measured squiggles to the target virus’s precom-
puted reference squiggle. A classification decision is made
based on the degree of match. We develop a custom subse-
quence dynamic time warping (sDTW) algorithm [18] to
perform this classification. It includes solutions that improve
accuracy by adaptively examining longer read prefix lengths
when needed. It also includes customizations that result in
area efficient hardware.

sDTW-based SquiggleFilter is significantly more efficient
than a DNN-based basecaller, and its regular compute-bound
characteristic makes it amenable for hardware acceleration.
sDTW is a dynamic programming algorithm [49] whose com-
plexity is proportional to the product of the length of the ref-
erence (R) and query (Q). Its regular memory access pattern
allows us to build a fast and space efficient 1D systolic array
accelerator for sDTW with a constant number of process-
ing elements. Fortunately, we find that almost all epidemic
viruses have genome references of length 50,000 (R) bases
or smaller (see Figure 10) [39]. As a result, our accelerator
can easily complete the classification in ~2R cycles (forward
and backward of reference strand), and still meet the strict
latency requirement for leveraging Read Until.

Our work makes the following contributions:

e we demonstrate that basecalling is the computational
bottleneck in the virus sequencing pipeline. Read align-
ment and variant calling — targets for prior accelerator
work — are not the bottleneck.

e we identify direct squiggle alignment (first proposed
in [38]) as a more efficient alternative to basecalling
and alignment when enriching low-concentration viral
specimens with Read Until.

e we propose multi-stage sDTW and several modifica-
tions to vanilla SDTW to realize an accurate and effi-
cient hardware accelerator.

e we co-design a sDTW hardware accelerator to filter
non-viral reads, for variable read prefix and almost all
infectious viral genome lengths

e we demonstrate that this hardware, unlike current ap-
proaches, will enable Read Until to scale with rapidly
increasing nanopore sequencing throughput

e we quantify accuracy and efficiency of our classifier us-
ing real-world metagenomic datasets, including datasets
collected from our wet-lab experiments for Read Until.

Results: We design an edge device with compute capa-
bilities similar to a Jetson Xavier System-on-Chip [7] con-
sisting of SquiggleFilter, an edge GPU, and an 8-core ARM
processor. We show that our proposed SquiggleFilter can
accurately distinguish target viral DNA/RNA from back-
ground human DNA/RNA. We evaluate accuracy using non-
contagious lambda phage virus data sequenced in our own lab.
In terms of efficiency, we show that our SquiggleFilter ac-
celerator has 274 x higher throughput than the conventional

i T
- ! Daily US COVID-19 Tests
2 millionq 1
ISARS-CoV-2 :1 Million
1Sequenced \Daily Tests
1 1
1 million - : :
1 1
500,000 1 ensufﬁcient TestingI ',
100,000 4__I 1 .
Jan 12020 July 15 Jan 12021

Figure 2: Progression of US COVID-19 testing [30]

software pipeline (using a basecaller) on an edge GPU while
only consuming an area of 13.25mm? and power of 14.31W.
SquiggleFilter’s throughput is 233.65M samples/s, which far
exceeds the maximum throughput of 2.05M samples/s on a
MinION [58], and is adequate to handle up to a 114X in-
crease in MinION’s throughput in the future. The latency
for classifying any read is 0.043ms, which is insignificant to
Read Until decision’s critical path.

2. BACKGROUND

2.1 Need for a Virus Detector

While SARS-CoV-2 was discovered — and its RNA genome
sequenced — by early January 2020, it was not until several
months later that mass testing was available worldwide. Fig-
ure 2 shows the steady increase in daily COVID-19 tests
performed within the United States [30]. A widely estab-
lished global testing infrastructure would have helped control
the spread of the virus early on, possibly saving hundreds of
thousands of lives.

Given the increasing frequency of viral outbreaks, experts
are concerned that it is only a matter of time before a new
virus threatens the globe [40]. Thus, we need a virus test-
ing technology that can be widely deployed ahead-of-time,
and reprogrammed to detect and identify mutations in novel
viruses as soon as they emerge.

In this work, we focus on controlling the spread of novel
infectious viruses in their early stages, as soon as they are
discovered and sequenced. Our goal is to enable a univer-
sal rapid test that can determine the whole genome of a
target virus using reference-guided assembly. Targeting a
specific virus enables us to make significant optimizations
that help us reduce time and cost of sequencing and compute.

2.2 State-of-the-art Virus Detectors

Table 1 lists commonly used tests and ONT-based sequenc-
ing solutions for SARS-CoV-2. None of the methods except
direct RNA or DNA sequencing are programmable, and there-
fore, are not effective in controlling the pandemic in its early
stages. Antigen (paper) tests detect specific surface proteins
on the virus. They are cheap, portable, and fast. However,
they have low sensitivity and can only detect viruses present
at high concentrations.

Molecular tests identify specific regions of interest in a
virus’s genome and amplify this DNA if present in the speci-
men. Polymerase Chain Reaction (PCR) is a common tech-
nique used for amplification. It has high sensitivity [42] but
requires thermal cycling, which can be slow and expensive.
LAMP (Loop Mediated Isothermal Amplification) is a more
recent technology that obviates the need for a thermal cycler,

Diagnostic Time Cost
Tests Power Programmable (min))
Antigen-based test
Paper [11] presence 15 5
Non-sequencing molecular test
RT-LAMP [25] [16] presence 60 15
RT-PCR [1] presence 120-240 <10
Sequencing based molecular test (30x coverage)
ARTIC [4] [1] 98 targets 305 100
LamPORE [31] 3 targets <65 -NA-
RNA: 1% virus whole genome v 240 110
0.1% virus [6] whole genome v 1206 190
DNA: 1% virus whole genome v 320 105
0.1% virus [S] whole genome v 470 120

Table 1: A comparison of popular commercial and ONT
sequencing-based virus detectors for SARS-CoV-2.

but its primers are more complicated to design than PCR.

If amplification was successful (i.e., target DNA is present),
it can be detected using fluorometry or colorimetry. Most
clinical tests for SARS-CoV-2 stop here. However, by se-
quencing the amplified specimen, we can assemble portions
of virus’s genome, depending on the number of targets am-
plified. ARTIC and LamPORE [31] amplify 98 and 3 genes
respectively, and then use ONT’s nanopore sequencing.

Current solutions for virus detection use multiplex primer
sets specific to a virus. Primer design is a complex, error-
prone and time-consuming process [44] [43]. Thus, they are
not an effective solution for early pandemic control. The
COVID-19 pandemic highlights this problem, where design-
ing and distributing target-specific primers was challenging,
especially when supply chains broke amidst the pandemic.

An alternative to developing custom primers is to directly
sequence the specimen following amplification with universal
primers, which non-selectively amplify all DNA. This amplifi-
cation step is required to increase the quantity of DNA, which
greatly reduces average capture time (the time required for a
DNA strand to enter a nanopore) and therefore sequencing
time. The wet-lab protocol followed, Sequence Independent
Single Primer Amplification (SISPA) [9, 17], is universal
and hence can be used on all RNA viruses. SISPA has four
major steps: (1) RNA extraction, (2) complementary DNA
generation, (3) PCR amplification, and (4) final sequencing
specimen preparation.

A significant hurdle to SISPA-based sequencing is that
following amplification, the specimen contains the genetic
material of the target virus among a sea of human and bac-
terial DNA/RNA. The proportion of target virus DNA/RNA
can be as low as 0.01% percent [26]. As a result, the time
and cost of sequencing and data processing for this approach
is significantly greater than that of custom primer-based solu-
tions.

If this cost barrier can be overcome, this approach would
enable detection of novel viruses without requiring months to
develop and distribute virus-specific primers. Read Until can
greatly increase the efficiency of sequencing by filtering out
non-target reads using the virus’s reference genome. Current
Read Until approaches are limited by insufficient throughput,
but our hardware accelerated SquiggleFilter ensures the future
scalability of Read Until on higher throughput sequencers.

2.3 Portable MinlON Sequencer

Oxford Nanopore Technology’s (ONT) MinION offers
multiple benefits that makes it a uniquely attractive solution
for mobile and rapid virus detection.

Long reads: MinION sequencers are capable of measur-
ing long strands of DNA, and can theoretically sequence any
strand, regardless of length. The current world record stands
at over 4 million bases [34].

Cost: The MinION only costs $1,000, and offers afford-
able specimen preparation kits ($100/use) and flow cells
($125/use assuming 4x re-use). In comparison, it costs
$80,000-$100,000 to purchase even the most affordable “Next
Generation Sequencing” machines.

Real-time: MinION sequencers provide real-time, stream-
ing output from the device. Streaming signal output enables
on-the-fly secondary analyses, and the ability to stop sequenc-
ing as soon as the desired coverage is reached.

Portability: A key feature that sets the MinION sequencer
apart from all other sequencers in terms of wet-lab, sequenc-
ing and compute as shown in Figure 3. The portable compute,
however, remains inefficient for real-time sequencing.

‘16 ’15 20

® @]

P oF

Sy Z —

MinlON Voltrax MK1C
Portable Portable Portable but inefficient
sequencer wet-lab compute for Read Until

Figure 3: Sequencing and wet-lab is portable. Compute,
though portable, is insufficient for Read Until.

Target enrichment: An especially exciting capability of
the MinION sequencer is “Read Until'', which ejects non-
target DNA/RNA strands by reversing the electrical potential
across the pore. This effectively enables digital enrichment
of target DNA/RNA in low-concentration specimens.

However, a slow read classification results in wasted se-
quencing time. Currently, the MinION has no inbuilt com-
puting power to make Read Until decisions. We additionally
find that commodity GPUs are undesirable in terms of both
throughput, latency and power.

3. COMPUTE BOTTLENECKS IN PORTABLE

VIRUS DETECTION

Our goal is to build a cost and time efficient sequencing
pipeline for determining the whole genome of a targeted virus,
but without using custom primers for target amplification. We
seek to reduce time and cost using the Read Until feature of
Oxford Nanopore (ONT)’s palm-sized MinION sequencer.

To this end, we constructed a software pipeline using state-
of-the-art bioinformatics tools and analyzed its performance.
Our profiling results expose new performance bottlenecks
that are different from those targeted in past accelerators for
human genome sequencing [20,23,24,28,33,41,55,61].

3.1 Bioinformatics Pipeline

The MinION sequencer measures electrical current signals
that represent the bases (A, G, T, C) moving through each

Specimen

! Target
reads
Align to reference Variant caller Whole
& classify genome

acquisition Read-Until: eject non-target reads
T [AR
v
Squiggles Q
Sample Basecaller
Preparation o
A%YA o
MinlON Guppy

MiniMap2 Racon->Medaka

Figure 4: A Read Until pipeline for targeted reference-guided assembly of a virus genome.

b)

Il Basecalling (87.72%)
Alignment (2.75%)
Variant Calling (9.53%)

Il Basecalling (95.95%)
Alignment (3.01%)
Variant Calling (1.04%)

Figure 5: Basecalling is the bottleneck in a Read Until
assembly of a SARS-CoV2 genome from specimens with
a) 1%, and b) 0.1% viral reads.

pore, recording approximately 10 samples for each base. All
the active pores (up to 512 in the MinION) concurrently pro-
duce squiggles for the reads flowing through them. These
squiggles can be analyzed in real-time as the reads flow
through the pores.

Figure 4 illustrates the analysis pipeline for the squiggles.
A basecaller translates squiggles into bases. The latest base-
callers (such as ONT’s Guppy [59]) use compute-intensive
DNNS5, which must be large and deep to attain state-of-the-art
accuracy. Guppy processes reads in chunks of 2000 sam-
ples, and uses five bidirectional LSTM layers for encoding
followed by a custom CTC (Connectionist Temporal Classifi-
cation) decoder. ONT provides two versions of its basecaller:
a high-accuracy version (Guppy), and another that trades off
accuracy for performance (Guppy-lite).

In our Read Until pipeline, squiggles of a read are base-
called in real-time. After a short prefix of a read has been
basecalled, it is then processed by an aligner (MiniMap2 [36])
that aligns the read to the target’s reference genome. If a good
alignment is found, then the read is classified as a target and
passed on to the next stage. Otherwise, a signal is sent to
the MinlON device, instructing it to eject the non-target read
from further sequencing. Thus, the critical computing path
for Read Until includes both the basecaller and aligner.

The target reads are collected and analyzed by a variant
caller (Racon [57] followed by Medaka [8]). We seek to
cover every position in the reference genome by 30 reads
(30x coverage). The variant caller analyzes the reads piled
up at each reference genome location, and identifies any
genomic differences (“variants”) between the sequenced and
reference viruses. As the variant caller is not involved in
Read Until decisions, it is off the critical path.

3.2 Performance Bottlenecks

Figure 5 shows the performance bottlenecks of the bioin-
formatics pipeline (Section 3) used to assemble the whole
SARS-CoV2 genome, evaluated on the CPU and GPU in Ta-
ble 3. The results are shown for two representative biological

specimens, one where the target viral reads constitute 1% of
all the reads, and the other 0.1%.

We observe that a large fraction of computing time
(96%) goes towards basecalling. This is in spite of using
the more efficient, but less accurate, Guppy-lite.

Compute spent towards aligning (MiniMap2) and variant
calling (Racon and Medaka) constitutes significantly smaller
fraction, especially for specimens with low viral load (0.1%).
In contrast, prior work on genomics accelerators targeted
aligners and variant callers used for reference-guided assem-
bly of human DNA [20,23,24,28,33,41,55,61]. There are
several reasons for this significant difference, discussed next.

All the reads are aligned to a target viral genome to classify
them as target or non-target. This alignment step, however,
is significantly less compute intensive compared to aligning
to a human genome, because viral genomes are much shorter
(~30,000 bases) than human DNA (3 billion bases).

Only a small fraction of target reads (1% to 0.1%) need
to be processed for reference-guided assembly of a viral
genome. Therefore, the variant caller is invoked only for
a small fraction of sequenced reads. Also, given that viral
genomes are shorter, we find that the variant caller does not
consume much compute resources. Furthermore, the variant
caller is not on the critical path for using Read Until, as it is
not required for classifying reads.

We find that even a 250W Titan GPU has barely enough
basecalling throughput (with low accuracy Guppy-lite) to
keep up with a MinION’s maximum sequencing throughput.
An edge GPU (e.g., Jetson Xavier’s) is several times slower
than that, and therefore it cannot process all the sequenced
reads in real-time to exploit the latency sensitive Read Until
feature.

Sequencing throughput, however, continues to grow, as
shown in Figure 6. Oxford Nanopore Technologies (ONT)’s
GridION is only slightly larger, but has 5x the sequencing
throughput of a MinION. ONT announced in 2019 that they
are working with MinlON prototypes that provide 16X se-
quencing throughput of MinION devices available in the
market today. Within the next few years, they plan to release
a production flowcell with 100x greater throughput [19].

Currently, the MinION does not have any on-board com-
pute capability. Our goal is to map all the secondary compute
analysis onto an edge system-on-chip so that it can be inte-
grated with the MinION. We address this growing computing
need with our small, low-power accelerated SquiggleFilter,
which greatly reduces the basecalling and alignment compu-
tation required for non-target reads.

) ——MinlON GrdION -=-PromethlON
] o

6
_'g“ 10 -
T R ——— R . -
5
2 102
i OPrototype
21
" 14 '15 '16 '17 '19

Timeline

Figure 6: Sequencing throughput is increasing exponen-
tially [48].

4. SQUIGGLEFILTER: A SQUIGGLE-LEVEL

TARGETED FILTER USING DYNAMIC
TIME WARPING

As discussed in Section 3, classifying a read being se-
quenced by analyzing its short prefix as target or not, in real-
time, is the compute bottleneck. Additionally, basecalling for
this classification consumes the most compute time.

Instead of using a basecaller (DNNs) and MiniMap?2 aligner
to classify a read’s prefix, we discuss SquiggleFilter’s algo-
rithm that directly aligns each read’s electrical signals (query)
to the target viral genome’s precomputed electrical signal
(reference). As a majority of the reads are non-targets, we
reduce latency and save much of the work done in basecalling
and aligning these non-target reads.

SquiggleFilter aligns the query squiggle with a precom-
puted reference squiggle of the viral genome using a variant
of the dynamic time warping (DTW) algorithm [29]. Re-
cent work has eschewed sDTW due to it’s ®(NM) complex-
ity [22,35,45,46], but we demonstrate that since both queries
(read prefixes) and virus genomes are short, it is a practical
solution for viral read enrichment. We further demonstrate
its effectiveness on real sequencing data for a SARS-CoV-2
specimen.

Finally, we propose multi-stage sDTW filtering to improve
efficiency, and discuss several improvements to conventional
sDTW that help realize an efficient hardware accelerator.

4.1 Constructing the Reference Squiggle

In order to align raw signals to a reference genome, the
known sequence of bases must first be converted to an ex-
pected current profile [37,38,51]. As a strand of DNA passes
through a nanopore, the current measured is affected by 5-6
adjacent bases simultaneously. A lookup table is provided by
ONT which contains the expected current (in pA) for every
possible combination of six bases (“6-mer’’) [53]. This con-
version is demonstrated in Figure 7, after which the expected
signal is normalized using the mean and standard deviation.

4.2 Normalizing Query Squiggles

Figure 8a shows a contrived minimal example of multiple
raw nanopore signals corresponding to the same sequence
of bases. Due to a variable rate of DNA/RNA translocation
through the nanopore, these signals are out-of-sync (transi-
tions between current levels do not occur simultaneously).
Using Dynamic Time Warping (discussed next) solves this
issue, and signals are aligned to the expected signal profile

reference

CTAAAACA

6-mer current
AAAAAA 86.486
AAAAAC 83.949
AAAAAG 85.475 1
AAAAAT 84.424 _\—,_\—'__I_I_

AAAACA 77.097

expected signal

Figure 7: Aligning reference bases to expected currents.

(shown in red in Figure 8b). Slight differences in applied bias
voltages at each nanopore cause the measured currents to
differ significantly, which is why normalization within each
read is additionally helpful (Figure 8c).

raw squiggles aligned normalized
Figure 8: a) Three raw current measurements (“squig-
gles”) for the same sequence of bases. We then show

squiggles aligned to the expected signal b) without, and
¢) with normalization.

4.3 Subsequence Dynamic Time Warping

Dynamic Time Warping (DTW) is a dynamic programming
algorithm which is commonly used to align out-of-sync sig-
nals [18,32]. Our filter applies subsequence DTW (sDTW), a
slight modification of standard DTW which allows the entire
query signal to align to any small portion of the reference,
rather than forcing end-to-end alignment of both sequences.

The original sDTW algorithm works as follows for subse-
quence query Q of length N, reference sequence R of length
M, and scoring matrix S:

def sDTW(Q,R):

S = zeros(N,M)
s[0,0] = (Q[0l-R[0])?
for i in range(1,N):

S[i,0] = S[i-1,0] + (Q[i]-R[0])2
for i in range(1,N):

for j in range(1,M):

S[i,3j] = (QL[i1-R[3j1)? + min(
S[li-1,j-11, Ss[i,j-11, s[i-1,3i1)

return min(S[N,:])

reference R

P rLru iy e

—_
L]
S[i,j-1]= S[i.i]
7 4
t]
S[i-1,j-1] S[i-1,j]

queryQ

m S[i, jl=min(S[i-1,j-1], S[i-L,j], S[1j-1]) +

/7 e
iToooooooouooooooooo abs(Qlil-R[i)

Figure 9: Dynamic time warping algorithm.

The above algorithm dynamically computes all possible
alignments of the query Q to reference R (keeping only the

best ones) while allowing arbitrary many-to-one or one-to-
many mappings between the two signal profiles. It is illus-
trated in Figure 9. Matrix S records a running tally of the
net squared differences between the two signals (using the
best alignment of Q[0 : i]). At the end, SN, j] (highlighted
top row in Figure 9) contains the alignment cost of Q to a
subsequence of the reference R[x : j|, where x is the start
of the best alignment ending at j. The minimum value in
this row corresponds to the least squared difference in signal
between alignments of the signal to the reference, and thus
the cost of the optimal alignment.

4.4 sDTW for Virus Detection

The majority of viruses which are responsible for hu-
man epidemics have relatively small single-stranded RNA
genomes [39], as is demonstrated in Figure 10. The two

. | e single stranded RNA
* [4rdouble stranded RNA

West Nile
BHorna Disease
Jellow Fever
JPengue Ebola
Zika Measles
dV - Mumps Coronavirus
Jolio Jdnfluenza BSARS
LoxsackigJnfluenza A ,Beovirus:

tes s e sy

5,000 10,000 50,000 100,000
Genome length (bases)

Figure 10: Epidemic virus genome lengths.

250,000

notable exceptions are smallpox and herpes simplex, which
have larger and more chemically stable double-stranded DNA
genomes. Because most viruses have small genomes, we
design our filter to operate on viruses with single-stranded
genomes of length less than 100,000 bases. Equivalently,
the filter works on viruses with double-stranded genomes
less than 50,000 bases long. At such short reference genome
lengths, it is computationally feasible to compare reads to
the entire reference genome for filtering. This would not be
a feasible solution for complex organisms such as humans,
with genomes approximately 3 billion base pairs long.

4.5 sDTW is an Effective Filter

We seek to design a solution that is capable of detecting all
strains of a particular viral species. It is therefore important
that our filter is tolerant to variants in the sequenced genome
relative to the reference genome used by our filter. We found
that reference-guided filtering can be accurate regardless of
viral strain, since the number of mutations between different
strains is low. Table 2 presents the number of single base
mutations between an assembled virus genome for several
known SARS-CoV-2 strains, relative to the original Wuhan
reference assembly [63]. No insertions or deletions were
observed. Strains were defined using NextStrain’s [27] classi-
fication of all sequenced SARS-CoV-2 genomes into groups
of shared ancestors, or “clades”, and data was sourced from
the GISAID database [50].

Since there are only a handful of mutations between vari-
ous SARS-CoV-2 strains, the final sSDTW alignment cost will
not be significantly impacted. This cost is used to determine
whether a given read aligns to the viral reference genome
by comparing it to a constant threshold. If the alignment
cost exceeds the chosen threshold, then the squiggle did not

Clade Mut. GISAID ID Lab of Origin Country
19A 23 593737 SE Area Lab Services Australia
19B 18 614393 Bouake CHU Lab Ivory Coast
20A 22 644615 Dept. Clinical Microbiology Belgium
20B 17 602902 NHLS-IALCH South Africa
20C 17 582807 Public Health Agency Sweden

Table 2: There are few mutations between SARS-CoV-2
strains, relative to the Wuhan reference genome.

match well with any subsequence of the reference genome’s
expected current profile, and the read can be discarded. Fig-
ure 11 shows that a static threshold can be used to distinguish
between viral and human DNA fragments (discarding reads
above the threshold and keeping reads below the threshold)
even when only a few thousand signals have been captured.
Due to the slight overlap in final alignment costs, some reads
will be incorrectly classified when using a static threshold.

1000 Samples

=== threshold
1001 mmm lambda
human

3000 Samples 5000 Samples

50

Read Count

0 5000 10000 0 20000 40000 0 20000 40000 60000

DTW Alignment Cost

Figure 11: sDTW cost distributions for reads of 3 prefix
lengths, aligned to the lambda phage genome.

4.6 Multi-stage sDTW Filtering

We observed that as a read’s sequenced prefix length in-
creases, the sSDTW alignment cost is more accurately able
to distinguish between target and non-target DNA (there is a
decrease in overlap between cost distributions in Figure 11).
However, waiting to make a Read Until decision increases
the proportion of non-target DNA sequenced.

Therefore, instead of a single-stage filter that chooses a
constant read length and threshold, we can filter in multiple
stages. The first stage examines a shorter read length (e.g.
1000 samples), but chooses a less aggressive threshold that
may let many non-target reads through. Non-target reads
filtered and ejected using Read Until at this stage would
be very short. If a read is retained, it is sequenced further.
The second stage then examines the longer read prefix (e.g.
5000 samples), and filters using a more aggressive threshold.
Intermediate results can be stored to avoid recomputation.
In this way, several stages enable the classifier to filter a
majority of non-target reads after seeing only a short prefix.
Only reads with initial low-confidence are sequenced more
before a decision is made. We have designed our hardware
accelerator with this (optional) capability.

4.7 sDTW Algorithm Improvements

We propose several modifications to SDTW which help
improve either our accelerator’s efficiency or accuracy of
non-target read filtering.

Absolute Difference: We reduce hardware area and avoid
multiplication by using abs(Q[i]-R[i]) as our distance
metric instead of (Q[i]-R[j]1)2.

Integer Normalization: Our solution uses 8-bit fixed
point arithmetic during normalization, with no significant
impact to classification accuracy (see Figure 18).

No Reference Deletions: Since the MinION averages 10
samples per base pair, it is unnecessary during sSDTW com-
putation for a single squiggle value to be able to align to
multiple bases. We removed the possibility of reference dele-
tions entirely from our dynamic programming computation,
sothatS[i,j] = abs(Q[i]-R[j]) + min(S[i-1,j-1],
Sli-1,31).

Match Bonus: This final modification improves filtering
accuracy. We found that reads with higher average transloca-
tion rates generally have higher alignment costs. To ensure
sDTW alignment costs solely represent quality of alignment
and are independent of translocation rate, we implemented
a “match bonus” that rewards reads for matching additional
reference bases, reducing the alignment cost for each match-
ing base by a constant (10) scaled by the number of signals
aligned to the previous reference base (thresholded to 10).

4.8 Need for an Accelerator

Despite the reduction in computation when compared to
basecalling, SDTW alignment is still too slow to run on
commodity hardware. SDTW alignment does avoid expen-
sive floating point operations, instead requiring 8-bit integer
comparisons and additions/subtractions. sDTW also has a
smaller memory footprint (60,000 reference bases) compared
to Guppy-lite (284,000 weights) when filtering SARS-CoV-
2. Despite memory and operation complexity advantages,
however, the number of operations required for sDTW (1,400
million) is greater than that of Guppy-lite (141 million). This
is still more efficient than Guppy (2,412 million). In order
to meet current and future MinION device requirements for
Read Until, it is necessary to design an accelerator.

S. ACCELERATED SQUIGGLEFILTER

We present a System-on-Chip for reference-guided assem-
bly of target viruses, shown in Figure 12. Its capabilities
are similar to a Nvidia Jetson TX2, except for our Squiggle-
Filter accelerator. Our SquiggleFilter accelerator classifies
and filters non-target reads, which constitute >99% of all
reads in most biological specimens. Thus, a large fraction of
computing identified in Section 3 is handled by our Squiggle-
Filter accelerator. Furthermore, our accelerator enables low
latency read classification, allowing us to use Read Until to
eject non-target reads after sequencing only a short prefix.

Target reads (and any false positives) are processed off of
Read Until’s critical path. Only these small fraction of reads
need to be basecalled, aligned, and variant called. We find
that we can perform these computations on an edge GPU
(basecaller) and ARM processor (aligner and variant caller),
and still construct the whole viral genome in approximately
10 minutes. Unfiltered non-target reads (false positives due
to sDTW algorithm) will fail to align to the viral reference
genome after basecalling, and so they will be discarded with-
out affecting the accuracy of conventional reference-guided
assembly. The final assembled genome and raw sequencing
data is written to a 32GB eMMC 5.1 flash memory, which is
sufficient to store one day’s worth of sequencing data.

We now present the 1D systolic array based Squiggle-

Filter accelerator for our squiggle-level classification algo-
rithm discussed in Section 4. It can be programmed to target
any novel viral genomes less than 100K bases. It supports
variable query length. That is, it can classify read prefixes of
different lengths, and thereby supports multi-stage filtering.
The size of the systolic arrays and buffers are derived from
our analysis of real-world metagenomic data.

Assembled genome &
raw sequenced data

eMMC
Flash

Read Until: eject non-target reads

. Read Until . i
'\\W Squiggles [_core § |

MinION MinKNOW DRAM

SquiggleFilter

Target reads L
ARM
— Edge GPU —
core

Reference-guided assembly
Figure 12: System-on-Chip design with the accelerated
hardware filter on ASIC integrated with NVIDIA GPU
and 8-core ARM v8.2 64-bit CPU

5.1 SquiggleFilter Design

SquiggleFilter consists of 5 independent tiles (one tile
is shown in Figure 13). Each can be individually power-
gated based on desired filtering throughput. This number
was chosen to meet the expected 100x future increase in
sequencing throughput. Each read is assigned to an available
tile for classification. As a read is sequenced, squiggles from
a MinION R9.4.1 flow cell are streamed into DRAM in real-
time. From there, squiggles are fetched into a tile’s query
buffers. Two ping-pong query buffers enable simultaneous
squiggle loading and normalization. Once the desired length
of read prefix has been sequenced, the raw squiggles of a
query are normalized and then stored across the processing
elements connected in a 1D systolic array.

Each tile also stores a copy of the precomputed reference
signal (loaded from flash during an initialization phase) in a
reference buffer. The reference samples are then streamed
into the systolic array. The entire SDTW matrix is computed
in a wavefront parallel manner as described in Section 4.7.
The final PE determines the final minimum alignment cost,
and sends a control signal to the MinION to eject the read if
the final cost exceeds a predetermined threshold. Non-ejected
reads are sequenced in full and stored in memory.

The number of cycles required to classify a new read is the
read prefix length (2000 samples) plus the reference genome
length (60,000 samples for SARS-CoV-2).

Reference Buffer: We chose to use a separate buffer (100
KB) for each tile, even though all the reference buffers across
the tiles store the same information (viral genome’s reference
squiggles). This allows us to reduce access latency and pro-
vide sustained throughput to each tile with just one read port.
The area cost of duplicating the references is negligible, as
reference buffers constitute only 6.98% of total tile area.

Furthermore, our design is independent of reference length
and limited only by the reference buffer size provisioned.
By loading a new precomputed reference signal onto the on-
board flash, SquiggleFilter can easily be reprogrammed to
detect a novel virus.

Variable Query Length: As discussed in Section 4.6,

Intermediate scores

(score+bonus)[il.(c-2) PE -

4 4 KB .
_ Queyt | weweso_Queryinit query init l
— Squiggles — Query 2 ormalizer —* R ref[ci+1] ref[c-il R :
1

(score+bonus)[i-1].(c-2)

|, 100KB PE[0] |smmmun - PE[i] - EELELL R VY
DRAM . score[i-1].(c-1) score[i].(c-1)

| || Reference EEEE—————— - ammmEn

: buffer R R score[i-1].(c-2) score[i].(c-2) mmmmE

] ! Is not virus?

1
_______ = = = =
| Intermediate scores

(Eject if read is not virus)

Figure 13: SquiggleFilter Tile. N=2000 PEs are connected with streaming inputs and outputs. The last PE determines
the classification by comparing its cost to a threshold every cycle. c is the cycle and i is the PE index.

query_in ref[c-i+1]
score[i-l:] c-1) H

b
1
5[—]
2

I query_out
be—

ref[c-i]

(score+b = ABS DIFF
[i-1].(¢- L §
H |
MAX_BONUS
MAX_BONUS |
ADD

bonus[ii1].(c-2) I 1

o

1

0
—_l\ MUX i
\ / scorelil.(c

A 7 [bonusil{c1) | [scorelll{c1) jpeorelil(c-1)
enable— /

reset— 1
AD
clock™ =

Is not virus?
(Eject if read is not virus)

score+bonus)
i [ilde-2)

bonus[i].{c-2)

(score+bonus)

[il-(c-2)

Figure 14: SquiggleFilter Processing Element.

12 kB i Mean [0S0,
Absolute

| : (MAD) finder norn

,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 15: SquiggleFilter Normalizer.

there exists a trade off between classification accuracy and
sequencing length of queries. We find (Section 7.4) that read
prefix length of 2000 samples yields the most savings using
Read Until, when we use a single threshold. Therefore, we
use a 1D systolic array of size 2000 PEs.

Our SquiggleFilter design can handle variable read prefix
lengths that are multiples of 2000 squiggle samples. To sup-
port query lengths longer than 2000 samples and multi-stage
filtering, we configure the last PE such that it can optionally
write the SDTW costs every cycle to DRAM. This consumes
significant memory bandwidth. However, it enables SDTW
computation to continue if greater classification accuracy by
analyzing a longer prefix is desired. These intermediate costs
are then loaded from DRAM and used to initialize the PEs
(similar to initial normalized query) prior to computing the
costs for a 4000-sample prefix length.

5.2 Processing Element

Each PE computes a cell in the SDTW matrix every cycle,
using the final algorithm described in Section 4.7. At cycle
¢, each PE (Figure 14) checks for the minimum among its
previous neighbor’s ¢ — 1 and ¢ — 2 cycle’s outputs, modified

i Mean- . 3
— MAD utlier Re- '
Query2 | finder Deviation |MAD filter scaler |}

by a bonus which rewards matching new reference bases.
This minimum is then added to the absolute difference of the
current query and reference values. Each PE stores the result-
ing costs and bonuses from its last two cycles for the next PE.
Additionally, the last PE contains logic to compare its cost
to a predefined threshold which determines whether or not to
eject the read. This threshold can be reprogrammed on the
SquiggleFilter based on software analysis of the target strain,
but we have found it to be relatively robust across species and
sequencing runs. Each PE is 1203um? and requires 1.92mW
when synthesized for a 28nm TSMC chip.

5.3 Normalizer

Normalization rescales the raw signals in order to improve
classification accuracy when performing sDTW [47], as dis-
cussed in Section 4.2. The normalizer, shown in Figure 15, is
a query preprocessor which streams in 10-bit samples from
the query buffer for accumulation. After every n = 2000 sam-
ples, the normalizer updates the mean and Mean Absolute
Deviation (MAD), defined as follows:

n
mean = x = Z
i=1

=

i " |xi7f|

! MAD =

S |

-1 N
Thereafter, the streamed-in samples are transformed with
mean-MAD normalization. The output normalized value is
filtered for outliers and then re-scaled to a reduced precision
8-bit integer which is then fed to the tiles for SDTW classifica-
tion. We find that 8 bits of precision is sufficient for accurate
classification (Figure 18). For efficiency, we do not convert
the ADC sample to floating point, but instead use fixed-point
values in the range [—4,4].

6. METHODOLOGY

Human DNA datasets containing Min[ON R9.4 and R9.4.1
flow cells were obtained from the Nanopore Whole-Genome
Sequencing Consortium [60] and the ONT Open Datasets [54].
The SARS-CoV-2 dataset contains raw MinlON R9.4.1 data
available from the Cadde Centre [3]. We sequenced lambda
phage DNA in our own laboratory using the ONT Rapid
Library Preparation Kit [14] following the Lambda Control
protocol with a MinION R9.4.1 flow cell.

We performed basecaller profiling measurements using a
Titan XP GPU (server class) and Jetson Xavier GPU (edge
class). Their specifications are provided in Table 3. We evalu-

ated both Guppy (dna_r9.4.1_450bps_hac.cfg) and Guppy-

lite (dna_r9.4.1_450bps_£fast . cfg) without modification

using Guppy version 4.2.2 [59]. MiniMap2 version 2.17-r954-
dirty [36] aligned basecalled reads.

First, we measured the basecalling throughput of Guppy
and Guppy-lite on a dataset of 33,004 full-length reads. Next,
we used the proprietary Python libraries ont-fast5-api ver-
sion 3.1.6 [12] and ont-pyguppy-client-1ib 4.2.2 [13]
to basecall the same reads in chunks of 2000 signals, thereby
simulating Read Until on the same dataset. The Python code
was instrumented to record latency information, and we tuned
the number of reads simultaneously in-flight to optimize per-
formance. This online Read Until processing (due to smaller
batch size) resulted in 4.05x lower throughput for Guppy-
lite and 2.85x lower throughput for Guppy on the Titan XP.
Using these measurements and the relative peak throughputs
of the Jetson and Titan, the Read Until performance of the
Jetson Xavier was estimated (necessitated by the unavailabil-
ity of ont-pyguppy-client ARM binaries for fine-grained
Read Until control on the Jetson).

Edge GPU Edge CPU GPU CPU

Jetson AGX . Intel Xeon
Model Xavier ARMV8.2 Titan XP 2x E5-2697v3
Cores 512 Volta 8 3840 Pascal 56
Clock 1377MHz 2265MHz 1582MHz 2600MHz

Table 3: Architectural specifications of evaluated GPUs.

A memory-efficient multi-threaded implementation of sSDTW
was written in Python for accuracy analysis, and tested on
1000 reads from each of the datasets mentioned above. In
order to determine the relative benefits of Read Until using
different classification latencies and accuracies, we developed
an analytical model to estimate sequencing runtime. This
model accounts for factors such as average read length, de-
sired coverage of the reference genome, average DNA capture
time, and the Read Until parameters mentioned previously.

The design was first functionally verified via emulation on
Amazon Web Service’s EC2 F1 instance, which uses a 16nm
Xilinx UltraScale+ VU9P FPGA. Further, SquiggleFilter was
synthesized using the Synopsys Design compiler for 28nm
TSMC HPC and the design is clocked at 2.5GHz. 32GB
256-Bit LPDDR4x is connected to the System-on-Chip along
with an 8-core ARM v8.2 64-bit CPU.

7. RESULTS
7.1 SquiggleFilter Hardware Synthesis

ASIC Element Area (mm?) Power (W)
Normalizer 0.014 0.045
Processing Element 0.001 0.002
Tile (1x2000 PEs) 2.423 2.780
Query buffer 0.023 0.009
Reference buffer 0.185 0.028
Complete 1-Tile ASIC 2.65 2.86
Complete 5-Tile ASIC 13.25 14.31

Table 4: SquiggleFilter ASIC synthesis results.

Table 4 shows SquiggleFilter synthesized to a 13.25mm?
ASIC that consumes 14.21W when performing single-stage
filtering and clocks at 2.5GHz. It contains 5 fully-independent

tiles (which could be individually power-gated to improve
energy efficiency). The latency for classifying a 2000-sample
read from SARS-CoV-2 is 0.027ms, and for lambda phage is
0.043ms, due to its longer reference genome. This adds in-
significant latency to each Read Until decision’s critical path,
since it takes around 500ms to sequence a sufficient number
of bases to make an accurate decision. The single-tile clas-
sification throughputs for SARS-CoV-2 and lambda phage
are 74.63M samples/s and 46.73M samples/s respectively,
which are both considerably higher than MinION’s current
maximum output of 2.05M samples/sec). Additionally, if
each tile is configured to perform multi-stage filtering, it will
write intermediate results to DRAM, consuming only 10 GB/s
main memory bandwidth per tile. Since Jetson Xavier’s main
memory supports 137 GB/s, our 5 tile design is feasible.

7.2 Performance Analysis

Latency: Figure 16a compares GPU-based basecalling
latency to our SquiggleFilter accelerator’s latency. Note that
we show only basecalling latency as it is the most time con-
suming step (96% of compute time) of the virus classification
pipeline. The measurements demonstrate that it would be
impractical to use the high-accuracy Guppy basecaller as its
latency is greater than one second, in which time more than
400 bases would have been unnecessarily sequenced for non-
target reads. We found that Guppy-lite provides sufficient
accuracy for Read Until classification as downstream aligner
MiniMap?2 is able to account for incorrect basecalls when
aligning reads. However, a 149ms basecalling latency for
Guppy-lite translates to an additional 60 bases sequenced for
each read during classification. Since most non-target reads
can be discarded after around 200 bases, this overhead is sig-
nificant. In comparison, the common-case 0.04ms decision
latency of SquiggleFilter ensures that not even a single base
pair is unnecessarily sequenced.

Throughput: Figure 16b compares the basecalling through-
put of Guppy-lite measured over GPU configurations to Squig-
gleFilter accelerator’s classification throughput. An edge
GPU such as the Jetson does not have sufficient compute
power to basecall data from all pores in real-time and keep
up with the maximum sequencing throughput of the MinION.
We calculated that the Jetson’s throughput would be approxi-
mately 95,700 bases per second, which is only 41.5% of the
MinION’s maximum output of 230,400 bases per second. In
the worst case, Read Until can only be performed using 41.5%
of the MinION’s pores when basecalling using Guppy-lite on
the Jetson. The remaining 59.5% of pores are unable to use
Read Until, and will sequence full-length human reads. In
contrast, SquiggleFilter’s throughput far exceeds MinION’s
and GridION’s sequencing throughputs.

7.3 sDTW Algorithm Accuracy

Figure 17a compares sDTW accuracy to basecalling and
alignment on a dataset of 1000 lambda phage and 1000 hu-
man reads, with a line plotted for each prefix length. The Min-
iMap?2 alignment quality and sDTW alignment cost thresh-
olds (for determining which reads to sequence and which to
reverse) are swept through the range of possible values to
show threshold-dependent accuracies. Although the Read
Until accuracy obtained by basecalling and aligning slightly

a) b)
10°] mammsmmgy e 500 bases| . 10°
-------- 100 bases E
1071 o
5 [PV
amE r ! 10 bases | =10
9 1072 Jg_
R BN
® 10-3 E
810 3
<
1074 F

103 — e

=== MinION output
GridION output

—-= PromethlION output
—— Future MinlON output

Squiggle
Filter

Guppy
Lite

Guppy

Guppy Guppy
Lite

Guppy

Guppy Squiggle Squiggle
Lite Filter Filter

Figure 16: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read Until.

outperforms sDTW, this is to be expected since alignment al-
gorithms such as MiniMap2 use numerous scoring heuristics
and have matured significantly over the past two decades [36].
Figure 18 shows the maximal F-score for all of our algo-
rithm modifications and standard SDTW on the same dataset.
As expected, accuracy generally increases along with sample
prefix length. We found that using both integer normaliza-
tion and absolute difference for our distance metric reduce
filtering accuracy slightly, a compromise which was expected.
Eliminating reference deletions results in a slight accuracy
improvement. Combining all three of these optimizations
results in the lowest accuracy (but most efficient) of all con-
figurations tested. We find that by including our “match
bonus”, we can recover lost accuracy and outperform the
baseline, with a minor performance penalty. Figure 19 fur-
thermore demonstrates that there is no a significant loss in
filter accuracy until there is more than a 1,000 base difference
between the reference genome and viral strain sequenced.

7.4 Benefits of Read Until

Read Until not only saves sequencing time, but also cost.
Figure 20 shows our wet-lab experiment. After sequenc-
ing for a while, washing the flow cell with nuclease and
re-multiplexing (rapid alternations of pore voltage bias di-
rection, shown with dotted black line) leads to control and
Read Until pores having the same number of active channels.
This means that Read Until does not damage the flow cell any
more than normal sequencing, but enables more experiments
to be run over the lifetime of any flow cell.

The single-threshold Read Until design space was first ex-
plored for our lambda phage dataset. Figure 17a shows the
accuracy of SquiggleFilter for a variety of Read Until prefix
lengths (each line), and for all reasonable SDTW alignment
cost thresholds (points on each line). Given this experimen-
tally measured accuracy, the total expected sequencing time
to perform Read Until for lambda phage was calculated us-
ing our analytical model, and is shown in Figure 17b. We
found that the best single-threshold configuration for Squig-
gleFilter outperforms Guppy-lite on this dataset by 12.9% in
terms of Read Until runtime. By using multiple thresholds,
we can reduce runtime by a further 13.3%.

A similar analysis was then performed for the SARS-CoV-
2 dataset, and the results are shown in Figure 17c. Optimal
sDTW alignment cost thresholds were taken from the Read
Until runtime minima from Figure 17b, and the corresponding
Read Until runtimes using those thresholds are marked for
the SARS-CoV-2 dataset.

10

7.5 Looking Forwards: Scalability

Sequencing throughput is expected to increase by 10 —
100x within the next few years, due to new nanopore chem-
istry enabling a denser configuration with many more chan-
nels per flow cell [19]. Figure 21 shows that without further
improvements to basecalling throughput, current GPUs will
be unable to keep pace with new sequencing technology. As
a result, the time and cost savings gained through Read Until
will be largely lost. We can see that Guppy-lite’s slight edge
over SquiggleFilter in terms of accuracy has already been lost
due to its inability to perform Read Until on 512 pores. In
contrast, our SquiggleFilter accelerator can tolerate a 114 x
increase in sequencing throughput.

8. RELATED WORK

The MinION was released in 2014 as the first commercially
available nanopore-based DNA/RNA sequencing device [10].
The first Read Until software pipeline was developed two
years later, in 2016 [38]. In this seminal work, raw nanopore
signal was first segmented into events, and then events were
aligned to a lambda phage reference using subsequence Dy-
namic Time Warping (described in Section 4.3). Event seg-
mentation is used to detect the most likely positions in the raw
signal where a new base has entered the pore, and could be
considered a rudimentary form of basecalling. In fact, it has
been used as an essential preprocessing step in several older
basecallers [59]. Unfortunately, the throughput measured by
this original work on an 8-core ARM processor is 40x lower
than the current maximum MinION output.

As basecalling throughput and accuracy has gradually in-
creased over the last few years, the standard approach for
Read Until pipelines has been to basecall the signal and
use an aligner to determine if each read aligns to the tar-
get genome [15,22,45,46]. This method achieves the highest
accuracy, but is not scalable. When pairing a server-class
GPU with a handheld MinION device, it is just able to per-
form Read Until with the required throughput, albeit with
significant latency (as shown in Section 7.2).

UNCALLED, a more recent work, skips basecalling by
doing approximate alignments in 3 steps: event segmenta-
tion, FM-index look-ups, and seed clustering [35]. How-
ever, we evaluated UNCALLED and observed that it requires
longer prefix lengths for accurate alignment. 23.63% of 2000-
sample long chunks from our lambda phage dataset were not
alignable. After segmentation, UNCALLED uses an FM-
index to filter reads. UNCALLED aligns only ~76% of the
lambda reads of 2000 samples on a modern Intel i7-7700

a) Accuracy b) Lambda Phage C) SARS-CoV-2
10 O | 7 amio [K No Read Until
g) \ \l / / o | . \ Multi-threshold SquiggleFilter
< 0.8 £ . ‘ N K £ 6% 107 7% o * Selected Threshold
5 € | ’ ! = |- / SquiggleFilter 1000 samples
oo T i|E TRV soer
go = \ I 2 1 \' - SquiggleFilter 2000 samples
Qo4 = AW | H 5] I \/ — .= SquiggleFilter 3000 samples
c < I AN / c 'l — — SquiggleFilter 5000 samples
© D 104 / O 4x103 . N
€02 - \ \(M — . - Y = = =+ SquiggleFilter 8000 samples
=} i N/ -7 s Guppy-lite 1000 samples
~a PPy p
T g0 & Y &
3x103
0.0 0.2 0.4 0.6 0.8 1.0 0 20000 40000 60000 80000 0 20000 40000 60000 80000

Lambda Phage Discard Rate

sDTW Alignment Score Threshold

sDTW Alignment Score Threshold

Figure 17: SquiggleFilter Read Until a) accuracy, and performance on b) lambda phage and c) SARS-CoV-2 datasets.

1.0
0.9
Baseline
0.8 .
S No Reference Deletions
wn ---- Integer Normalization
@ 0.7 .
-------- Absolute Difference
0.6 —— All Efficiency Optimizations
-~ All Eff Opts + Match Bonus
0.5
0 1000 2000 3000 4000 5000 6000 7000
Samples

Figure 18: Accuracy results for modifications to the stan-
dard sDTW algorithm.

1.0
_____________ —

(0] . . D
= Substitutions
30.5 :
@ Insertions
w - Deletions

0.0 s o)

10° 10! 102 103 104

Number of Mutations
Figure 19: SquiggleFilter accuracy is robust against ran-
dom (lambda phage) reference mutations.

desktop processor taking 16ms per read. Moreover, ~14%
of reads take 353ms per read to be aligned as more samples
are required for a decision. ~10% of the reads, however, are
left unaligned. On an edge device with an ARM core and
lower memory bandwidth, performance would be worse. No
existing software-only solution has adequate throughput and
low enough latency to effectively perform Read Until on an
edge device.

In contrast, our approach shifts to a minimalistic SDTW
alignment algorithm, and by designing hardware to acceler-
ate the simple and regular sDTW computation, we can easily
meet the desired throughput and latency requirements on an
edge device. General purpose DTW accelerators have al-
ready been designed to solve alignment problems in other
domains such as audio signal processing [52] and astron-
omy [47], but nanopore viral DNA/RNA filtering required
several application-specific optimizations to meet the desired
latency, throughput and accuracy requirements. Our design
involves several algorithmic modifications to vanilla sSDTW
(described in Section 4.7), uses an on-chip buffer for effi-
cient repeated alignments to the same reference, replaces
all floating-point computation with integer arithmetic for in-
creased efficiency, uses multi-stage filtering for optimal Read
Until results, and has been evaluated on a novel virus (SARS-
CoV-2).

There has recently been significant work on designing
hard-ware accelerators for genomics applications [20,23,24,

11

=

—Control
i —Read Until 450bp

@
o

@
=

IS
3

\r\%
) g

oy

N
1=}

-

Active channels (%)

1 2 : 3 4 5 6
Sequencing time (x10*sec)
Figure 20: Time saved is cost saved for sequencing.

6
o 10 o {GridION | PromethION \
E FR ERNRPR go Rea? U?g{)w)
1 e [NENEEEEE uppy-lite

2104 T g 1-Tile SquiggleFilter (3W)
S AR ..,.{+ 5-Tile SquiggleFilter (14W)
c vy
g i T"\. .
5102 Lo i
b MinION Futire Miniofrs,

102 10® 10° 105 105 107 108 10°

Sequencer Channels

Figure 21: Future SquiggleFilter Read Until benefits.

28,33,41, 55, 61], but these accelerators focus on human
genome sequencing. As a result, they efficiently align many
(usually short) basecalled reads to a long reference genome
with high throughput and accuracy. As noted previously in
Section 3.2, our problem has very different computational
needs. We must selectively filter short noisy raw signals
(squiggles) with sufficiently high throughput and low latency
to effectively exploit Read Until. We achieve this by replacing
the basecaller and aligner with SquiggleFilter.

9. CONCLUSION

In designing a universal virus detector, we identify the
basecaller to be a significant bottleneck in filtering non-target
reads. This compute problem is only going to get worse, as
the throughput of nanopore sequencers is expected to increase
by 10-100x in the near future. We address this problem
using hardware-accelerated SquiggleFilter for filtering non-
target reads without basecalling them. We show that our
14.3W 13.25mm? accelerator has 274 x greater throughput
and 3481 x lower latency than existing approaches while
consuming half the power, enabling Read Until for the next
generation of nanopore sequencers.

APPENDIX
A. ARTIFACT APPENDIX

A.1 Abstract

Our artifact contains the RTL and testbench SystemVer-
ilog code for our SquiggleFilter accelerator in the design/
subdirectory. Additionally, sdtw_analysis.ipynb is a full
Jupyter Notebook pipeline containing our software sSDTW
algorithm implementation and our Read Until runtime model,
along with scripts for generating multiple figures from our

paper.

A.2 Artifact check-list (meta-information)

Algorithm: Hardware and software implementation of
custom subsequence Dynamic Time Warping (sDTW)
algorithm for filtering non-viral DNA reads in real time.

e Program: RTL and SystemVerilog testbench code for
SquiggleFilter accelerator. Jupyter Notebook contain-
ing Python sSDTW implementation and runtime model.

e Data set: Raw human, lambda phage, and SARS-CoV-
2 FASTS data from several public sources [3, 54].

e Run-time environment: Vivado 2019.1 and Jupyter
Notebook. Build instructions targeted to Ubuntu 18.

e Hardware: At least one CPU core and 10GB RAM
for the notebook. Recommended requirements for Xil-
inx Vivado based on Xilinx SDK: min 2.2GHz, Intel
Pentium 4, Intel Core Duo, or Xeon Processors; SSE2
minimum.

o QOutput: Software regeneration of multiple figures from
the paper. Verification of hardware using SystemVerilog
testbench.

e How much disk space required (approximately)?:
40GB public dataset download. 40GB for public dataset
download. Xilinx Vivado requires upto 30GB of diskspace
for installation and an additional 2.5GB if Vivado simu-
lation is started.

e How much time is needed to complete experiments
(approximately)?: Jupyter Notebook requires 10 min-
utes with 56 cores. Vivado simulation on the SARS-
CoV-2 reads can take 1-21 minutes on a Quadcore 8th
Gen i5 with 8GB RAM depending on the number of
test-cases anyone may wish to run.

o Publicly available?: Yes.
e Archived (provide DOI)?: https://doi.org/10.5
281/zenodo.5150974
A.3 Description

A.3.1 How to access

All of the source code is open source, and can be obtained
either through GitHub' or Zenodo?.

Uhttps://github.com/TimD 1/SquiggleFilter
Zhttps://doi.org/10.5281/zenodo.5150974

12

A3.2

The SquiggleFilter code requires approximately 10GB of
RAM, and the datasets used require approximately 40GB
of disk space. Xilinx Vivado comes with the following ad-
ditional requirements on the processor: minimum 2.2GHz,
Intel Pentium 4, Intel Core Duo, or Xeon Processors; SSE2
minimum.

Hardware dependencies

A.3.3 Software dependencies

Any Linux OS can be used, but a recent Ubuntu release is
recommended for ease of installation. The Jupyter Notebook
has multiple Python package dependencies, which will be
installed by the setup.sh script. For hardware evaluation,
a recent installation of the licensed Vivado Design Suite is
recommended; we used release 2019.1. Further details on the
installation can be found on https://www.xilinx.com/s
upport/download/index.html/content/xilinx/en
/downloadNav/vivado-design-tools/archive.html.

A.3.4 Data sets
Our artifact uses three raw nanopore signal (FASTS) datasets:

e lambda: This dataset of 21,000 lambda phage reads
was generated in our laboratory, and is included in our
GitHub repository at data/lambda/fast5.

e covid: This dataset of 1.2 million SARS-CoV-2 reads

is downloaded from the CADDE Centre [3] to data/-
covid/fast5 by the setup. sh script.

e human: This dataset of 65,000 huan reads is down-
loaded from ONT Open Datasets [3] to data/human/-
fastb by the setup. sh script.

A.4 Installation

All source code is available in either our GitHub! or Zen-
odo? repositories.

o README.md contains instructions for evaluating the
artifacts

o design/ contains the SystemVerilog RTL and testbench.
testbench_top.sv is the top file of the testbench for
behavioral simulation. normalizer_top.v is the top

file for the normalizer and it’s sub-modules. warper_top.sv

is the top file for the systolic array.

e sdtw_analysis.ipynb contains our software pipeline,
Python sDTW implementation, and runtime model.

e setup.sh is the setup script
e data/ contains all three datasets
e scripts/ contains all scripts used for data analysis

Please follow all instructions from README.md to evaluate
the artifacts.

A.5 Evaluation and expected results

A.5.1 Hardware

After installing and running Vivado, go under settings and
change the simulation run time to 18ms for complete sim-
ulation. On the flow navigator, pressing the run simulation
option would start the simulation and messages would start

https://doi.org/10.5281/zenodo.5150974
https://doi.org/10.5281/zenodo.5150974
 https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
 https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
 https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html

appearing on the tcl console printing whether the testcases
passed or failed. We observe and expect all the testcases
to pass. Additionally, the waveform may be viewed as the
simulation begins. Please find detailed instructions in de-
sign/Hardware_README. txt.

A.5.2 Software

After the Jupyter Notebook is running, please select the
sf-venv3 kernel (Kernel -> Change Kernel) created by
the setup.sh script. Then, run all cells in order (Kernel
-> Restart and Run All). The entire pipeline should run
successfully, computing the SDTW scores on the datasets
selected and regenerating most of the figures in our paper.

A.6 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policie
s/artifact-review-badging

e http://cTuning.org/ae/submission-20201122
.html

e http://cTuning.org/ae/reviewing-20201122
.html

REFERENCES

[1] 2019-nCoV CDC-qualified Probe and Primer Kits for SARS-CoV-2.

[2

3

[4

[5

[6

[7

[8

[9

[10

[11

[12

[13

—

—

=

—

[t

—

=

—

]

]

1

—

LGC Biosearch Technologies. [Online]. Available: https:
/Iwww.biosearchtech.com/products/pcr-kits-and-reagents/pathogen-
detection/2019-ncov-cdc-probe-and- primer-Kit- for-sars-cov-2

“ARTIC V3 Update Notes,” the ARTIC Network. [Online]. Available:
https://artic.network/resources/ncov/ncov-amplicon-v3.pdf

Brazil-uk centre for arbovirus discovery, diagnosis, genomics and
epidemiology. [Online]. Available:
https://cadde.s3.climb.ac.uk/SP1-raw.tgz

c¢DNA PCR Sequencing Kit. Oxford Nanopore Technologies. [Online].
Available: https://store.nanoporetech.com/us/sample-prep/cdna-pcr-
sequencing-kit.html

Direct cDNA Sequencing Kit. Oxford Nanopore Technologies.
[Online]. Available: https://store.nanoporetech.com/us/sample-
prep/direct-cdna-sequencing-kit.html

Direct RNA Sequencing Kit. Oxford Nanopore Technologies.
[Online]. Available: https://store.nanoporetech.com/us/catalog/produc
t/view/id/297/s/direct-rna-sequencing-kit/category/28/

Jetson agx xavier developer kit. NVIDIA. [Online]. Available: https:
//developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

Medaka. Medaka - Medaka 1.2.0 documentation. [Online]. Available:
https://nanoporetech.github.io/medaka/

Metagenomic analysis of SARS-CoV-2 respiratory samples via
Sequence-Independent Single Primer Amplification (SISPA) and
nanopore sequencing. Oxford Nanopore Technologies. [Online].
Available:
https://nanoporetech.com/sites/default/files/s3/literature/COVID-
19_metagenomic_sequencing.pdf

MinION DNA Sequencer. Oxford Nanopore Technologies. [Online].
Available: https://nanoporetech.com/products/minion

Navica App and BinaxNOW COVID-19 Ag Test Card. Abbott Point
of Care Testing. [Online]. Available:
https://www.globalpointofcare.abbott/en/product-details/navica-
binaxnow-covid- 19-us.html

ont-fast5-api. FASTS5 API: a simple interface to HDFS files of the
Oxford Nanopore .fast5 file format. [Online]. Available:
https://pypi.org/project/ont-fast5-api/

ont-pyguppy-client-lib. PyGuppy: Python bindings for the
GuppyClient library. [Online]. Available:
https://pypi.org/project/ont-pyguppy-client-1ib/

13

[14] Rapid Library Preparation Kit (SQK-RADO004). Oxford Nanopore
Technologies. [Online]. Available: https:
/[store.nanoporetech.com/us/sample-prep/rapid-sequencing-kit.html

[15] Read until api. Oxford Nanopore Technologies. [Online]. Available:
https://github.com/nanoporetech/read_until_api

[16] SARS-CoV-2 Rapid Colorimetric LAMP Assay Kit. New England
Biolabs. [Online]. Available: https://www.neb.com/products/e2019-
sars-cov-2-rapid-colorimetric-lamp-assay-kit

[17] Sequence-Independent, Single-Primer Amplification of RNA viruses
V.3. University of Wisconsin-Madison. [Online]. Available:
https://www.protocols.io/view/sequence-independent- single-primer-
amplification-o-bckxiuxn.html

[18] D.J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, USA:, 1994, pp. 359-370.

[19] C. Brown, “Technology update,” 2019, nanopore Community Meeting.
[Online]. Available: https://nanoporetech.com/resource-
centre/nanopore-community-meeting-2019-technology-update

[20] D.S. Cali, G. S. Kalsi, Z. Bingdl, C. Firtina, L. Subramanian, J. S.
Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand
et al., “Genasm: A high-performance, low-power approximate string
matching acceleration framework for genome sequence analysis,” in
2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2020, pp. 951-966.

[21] H. S. Edwards, R. Krishnakumar, A. Sinha, S. W. Bird, K. D. Patel,
and M. S. Bartsch, “Real-time selective sequencing with rubric: Read
until with basecall and reference-informed criteria,” Scientific Reports,
vol. 9, no. 1, pp. 1-11, 2019.

[22] H. S. Edwards, R. Krishnakumar, A. Sinha, S. W. Bird, K. D. Patel,
and M. S. Bartsch, “Real-time selective sequencing with rubric: read
until with basecall and reference-informed criteria,” Scientific reports,
vol. 9, no. 1, pp. 1-11, 2019.

[23] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “Genax: a genome sequencing accelerator,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2018, pp. 69-82.

[24] D. Fujiki, S. Wu, N. Ozog, K. Goliya, D. Blaauw, S. Narayanasamy,
and R. Das, “Seedex: A genome sequencing accelerator for optimal
alignments in subminimal space,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1EEE,
2020, pp. 937-950.

[25] M. A. GOUILH, R. CASSIER, E. MAILLE, C. Schanen, L.-M.
ROCQUE, and A. VABRET, “An easy, reliable and rapid sars-cov2
rt-lamp based test for point-of-care and diagnostic lab,” medRxiv,
2020.

[26] A.L. Greninger, S. N. Naccache, S. Federman, G. Yu, P. Mbala,
V. Bres, D. Stryke, J. Bouquet, S. Somasekar, J. M. Linnen et al.,
“Rapid metagenomic identification of viral pathogens in clinical
samples by real-time nanopore sequencing analysis,” Genome
medicine, vol. 7, no. 1, p. 99, 2015.

[27] J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter,
C. Callender, P. Sagulenko, T. Bedford, and R. A. Neher, “Nextstrain:
real-time tracking of pathogen evolution,” Bioinformatics, vol. 34,
no. 23, pp. 4121-4123, 2018.

[28] T.J. Ham, D. Bruns-Smith, B. Sweeney, Y. Lee, S. H. Seo, U. G. Song,
Y. H. Oh, K. Asanovic, J. W. Lee, and L. W. Wills, “Genesis: a
hardware acceleration framework for genomic data analysis,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 254-267.

[29] R. Han, Y. Li, X. Gao, and S. Wang, “An accurate and rapid
continuous wavelet dynamic time warping algorithm for end-to-end
mapping in ultra-long nanopore sequencing,” Bioinformatics, vol. 34,
no. 17, pp. 1722-i731, 2018.

[30] J. Hasell, E. Mathieu, D. Beltekian, B. Macdonald, C. Giattino,
E. Ortiz-Ospina, M. Roser, and H. Ritchie, “A cross-country database
of covid-19 testing,” Scientific data, vol. 7, no. 1, pp. 1-7, 2020.

[31] P.James, D. Stoddart, E. D. Harrington, J. Beaulaurier, L. Ly, S. Reid,
D. J. Turner, and S. Juul, “Lampore: rapid, accurate and highly
scalable molecular screening for sars-cov-2 infection, based on
nanopore sequencing,” medRxiv, 2020.

[32] E.Keogh and S. Kasetty, “On the need for time series data mining

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.biosearchtech.com/products/pcr-kits-and-reagents/pathogen-detection/2019-ncov-cdc-probe-and-primer-kit-for-sars-cov-2
https://www.biosearchtech.com/products/pcr-kits-and-reagents/pathogen-detection/2019-ncov-cdc-probe-and-primer-kit-for-sars-cov-2
https://www.biosearchtech.com/products/pcr-kits-and-reagents/pathogen-detection/2019-ncov-cdc-probe-and-primer-kit-for-sars-cov-2
https://artic.network/resources/ncov/ncov-amplicon-v3.pdf
https://cadde.s3.climb.ac.uk/SP1-raw.tgz
https://store.nanoporetech.com/us/sample-prep/cdna-pcr-sequencing-kit.html
https://store.nanoporetech.com/us/sample-prep/cdna-pcr-sequencing-kit.html
https://store.nanoporetech.com/us/sample-prep/direct-cdna-sequencing-kit.html
https://store.nanoporetech.com/us/sample-prep/direct-cdna-sequencing-kit.html
https://store.nanoporetech.com/us/catalog/product/view/id/297/s/direct-rna-sequencing-kit/category/28/
https://store.nanoporetech.com/us/catalog/product/view/id/297/s/direct-rna-sequencing-kit/category/28/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://nanoporetech.github.io/medaka/
https://nanoporetech.com/sites/default/files/s3/literature/COVID-19_metagenomic_sequencing.pdf
https://nanoporetech.com/sites/default/files/s3/literature/COVID-19_metagenomic_sequencing.pdf
https://nanoporetech.com/products/minion
https://www.globalpointofcare.abbott/en/product-details/navica-binaxnow-covid-19-us.html
https://www.globalpointofcare.abbott/en/product-details/navica-binaxnow-covid-19-us.html
https://pypi.org/project/ont-fast5-api/
https://pypi.org/project/ont-pyguppy-client-lib/
https://store.nanoporetech.com/us/sample-prep/rapid-sequencing-kit.html
https://store.nanoporetech.com/us/sample-prep/rapid-sequencing-kit.html
https://github.com/nanoporetech/read_until_api
https://www.neb.com/products/e2019-sars-cov-2-rapid-colorimetric-lamp-assay-kit
https://www.neb.com/products/e2019-sars-cov-2-rapid-colorimetric-lamp-assay-kit
https://www.protocols.io/view/sequence-independent-single-primer-amplification-o-bckxiuxn.html
https://www.protocols.io/view/sequence-independent-single-primer-amplification-o-bckxiuxn.html
https://nanoporetech.com/resource-centre/nanopore-community-meeting-2019-technology-update
https://nanoporetech.com/resource-centre/nanopore-community-meeting-2019-technology-update

[33]

[34]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

benchmarks: a survey and empirical demonstration,” vol. 7, no. 4.
Springer, 2003, pp. 349-371.

S. K. Khatamifard, Z. Chowdhury, N. Pande, M. Razaviyayn, C. Kim,
and U. R. Karpuzcu, “A non-volatile near-memory read mapping
accelerator,” arXiv preprint arXiv:1709.02381, 2017.

D. Kilburn, J. Burke, R. Fedak, H. Olsen, M. Jain, K. Miga, S. Mayes,
and K. Liu. High Data Throughput and Low Cost Ultra Long
Nanopore Sequencing. [Online]. Available:
https://15a13b02-7dac-4315-baa5-b3ced1ea969d filesusr.com/ugd/
5518db_164bac27f4654b1f94d3472f09372498.pdf

S. Kovaka, Y. Fan, B. Ni, W. Timp, and M. C. Schatz, “Targeted
nanopore sequencing by real-time mapping of raw electrical signal
with uncalled,” BioRxiv, 2020.

H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”
Bioinformatics, vol. 34, no. 18, pp. 3094-3100, 2018.

N. J. Loman, J. Quick, and J. T. Simpson, “A complete bacterial
genome assembled de novo using only nanopore sequencing data,”
Nature methods, vol. 12, no. 8, pp. 733-735, 2015.

M. Loose, S. Malla, and M. Stout, “Real-time selective sequencing
using nanopore technology,” Nature methods, vol. 13, no. 9, p. 751,
2016.

G. Mahmoudabadi and R. Phillips, “A comprehensive and quantitative
exploration of thousands of viral genomes,” Elife, vol. 7, p. €31955,
2018.

A.J. McMichael, “Environmental and social influences on emerging
infectious diseases: past, present and future,” Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences, vol. 359, no. 1447, pp. 1049-1058, 2004.

A. Nag, C. Ramachandra, R. Balasubramonian, R. Stutsman,

E. Giacomin, H. Kambalasubramanyam, and P.-E. Gaillardon,
“Gencache: Leveraging in-cache operators for efficient sequence
alignment,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 334-346.

M. Nagura-Ikeda, K. Imai, S. Tabata, K. Miyoshi, N. Murahara,

T. Mizuno, M. Horiuchi, K. Kato, Y. Imoto, M. Iwata et al., “Clinical
evaluation of self-collected saliva by rt-qpcr, direct rt-gpcr, rt-lamp,
and a rapid antigen test to diagnose covid-19,” Journal of Clinical
Microbiology, 2020.

M. Park, J. Won, B. Y. Choi, and C. J. Lee, “Optimization of primer
sets and detection protocols for sars-cov-2 of coronavirus disease 2019
(covid-19) using pcr and real-time per,” Experimental & molecular
medicine, vol. 52, no. 6, pp. 963-977, 2020.

N. V. Patel. Why the CDC Botched Its Coronavirus Testing. MIT
Technology Review. [Online]. Available:
https://www.technologyreview.com/2020/03/05/905484/why- the-
cdc-botched-its-coronavirus-testing/

A. Payne, N. Holmes, T. Clarke, R. Munro, B. Debebe, and M. W.
Loose, “Nanopore adaptive sequencing for mixed samples, whole
exome capture and targeted panels.” BioRxiv, 2020.

R. Ronan. Read until adaptive sampling. Oxford Nanopore
Technologies. [Online]. Available: https://nanoporetech.com/resource-
centre/read-until-adaptive-sampling

D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul,
“Accelerating dynamic time warping subsequence search with gpus
and fpgas,” in 2010 IEEE International Conference on Data Mining.
IEEE, 2010, pp. 1001-1006.

T. Sauvage, W. E. Schmidt, H. S. Yoon, V. J. Paul, and S. Fredericq,

14

[49]

[50]

[51]

[52]

[53]

[54]1

[55]

[56]

[57]

[58]

[591

[60]

[61]

[62]

[63]

“Promising prospects of nanopore sequencing for algal hologenomics
and structural variation discovery,” BMC genomics, vol. 20, no. 1, pp.
1-17,2019.

P. Senin, “Dynamic time warping algorithm review,” Information and
Computer Science Department University of Hawaii at Manoa
Honolulu, USA, vol. 855, no. 1-23, p. 40, 2008.

Y. Shu and J. McCauley, “Gisaid: Global initiative on sharing all
influenza data—from vision to reality,” Eurosurveillance, vol. 22,
no. 13, p. 30494, 2017.

M. Stoiber, J. Quick, R. Egan, J. Eun Lee, S. Celniker, R. K. Neely,
N. Loman, L. A. Pennacchio, and J. Brown, “De novo identification of
dna modifications enabled by genome-guided nanopore signal
processing,” bioRxiv, 2017. [Online]. Available:
https://www.biorxiv.org/content/early/2017/04/10/094672

V. Sundaresan, S. Nichani, N. Ranganathan, and R. Sankar, “A vlsi
hardware accelerator for dynamic time warping,” in //th IAPR
International Conference on Pattern Recognition. Vol. IV. Conference
D: Architectures for Vision and Pattern Recognition,, vol. 1. 1EEE
Computer Society, 1992, pp. 27-30.

0. N. Technologies, “kmer_models,” GitHub repository, 2017.

0. N. Technologies. (2020) Ont open datasets: Gm24385 dataset
release. [Online]. Available:
https://nanoporetech.github.io/ont-open-datasets/gm24385_2020.09/

Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics
co-processor provides up to 15,000 x acceleration on long read
assembly,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 199-213, 2018.

J. R. Tyson, P. James, D. Stoddart, N. Sparks, A. Wickenhagen,
G. Hall, J. H. Choi, H. Lapointe, K. Kamelian, A. D. Smith et al.,
“Improvements to the artic multiplex pcr method for sars-cov-2
genome sequencing using nanopore,” bioRxiv.

R. Vaser, I. Sovié, N. Nagarajan, and M. gikic’, “Fast and accurate de
novo genome assembly from long uncorrected reads,” Genome
research, vol. 27, no. 5, pp. 737-746, 2017.

S. Wei, Z. R. Weiss, and Z. Williams, “Rapid multiplex small dna
sequencing on the minion nanopore sequencing platform,” G3: Genes,
Genomes, Genetics, vol. 8, no. 5, pp. 1649-1657, 2018.

R. R. Wick, L. M. Judd, and K. E. Holt, “Performance of neural
network basecalling tools for oxford nanopore sequencing,” Genome
biology, vol. 20, no. 1, p. 129, 2019.

R. E. Workman, A. D. Tang, P. S. Tang, M. Jain, J. R. Tyson, P. C.
Zuzarte, T. Gilpatrick, R. Razaghi, J. Quick, N. Sadowski et al.,
“Nanopore native rna sequencing of a human poly (a) transcriptome,”
BioRxiv, p. 459529, 2018.

L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanovi¢ et al., “Fpga accelerated
indel realignment in the cloud,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 277-290.

L. Zhang, X. Cui, K. Schmitt, R. Hubert, W. Navidi, and N. Arnheim,
“Whole genome amplification from a single cell: implications for
genetic analysis,” Proceedings of the National Academy of Sciences,
vol. 89, no. 13, pp. 5847-5851, 1992.

P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R.
Si, Y. Zhu, B. Li, C.-L. Huang et al., “A pneumonia outbreak
associated with a new coronavirus of probable bat origin,” nature, vol.
579, no. 7798, pp. 270-273, 2020.

https://15a13b02-7dac-4315-baa5-b3ced1ea969d.filesusr.com/ugd/5518db_164bac27f4654b1f94d3472f09372498.pdf
https://15a13b02-7dac-4315-baa5-b3ced1ea969d.filesusr.com/ugd/5518db_164bac27f4654b1f94d3472f09372498.pdf
https://www.technologyreview.com/2020/03/05/905484/why-the-cdc-botched-its-coronavirus-testing/
https://www.technologyreview.com/2020/03/05/905484/why-the-cdc-botched-its-coronavirus-testing/
https://nanoporetech.com/resource-centre/read-until-adaptive-sampling
https://nanoporetech.com/resource-centre/read-until-adaptive-sampling
https://www.biorxiv.org/content/early/2017/04/10/094672
https://nanoporetech.github.io/ont-open-datasets/gm24385_2020.09/

	Introduction
	Background
	Need for a Virus Detector
	State-of-the-art Virus Detectors
	Portable MinION Sequencer

	Compute Bottlenecks in Portable Virus Detection
	Bioinformatics Pipeline
	Performance Bottlenecks

	SquiggleFilter: A Squiggle-level Targeted Filter using Dynamic Time Warping
	Constructing the Reference Squiggle
	Normalizing Query Squiggles
	Subsequence Dynamic Time Warping
	sDTW for Virus Detection
	sDTW is an Effective Filter
	Multi-stage sDTW Filtering
	sDTW Algorithm Improvements
	Need for an Accelerator

	Accelerated SquiggleFilter
	SquiggleFilter Design
	Processing Element
	Normalizer

	Methodology
	Results
	SquiggleFilter Hardware Synthesis
	Performance Analysis
	sDTW Algorithm Accuracy
	Benefits of Read Until
	Looking Forwards: Scalability

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Evaluation and expected results
	Hardware
	Software

	Methodology

